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Comment on the Capillary Wave Model 
in Three Dimensions 

John D.  Weeks  I 

We argue that the capillary wave model provides an accurate description of 
long wavelength fluctuations of the liquid-vapor interface in three dimensions, 
provided that effects of external fields are properly taken into account. 
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Since my co-workers and I have argued for the utility of the capillary wave 
model (1'2) (CWM) combined with scaling ideas for interface fluctua- 
tions, (3-7) it was suggested that I comment briefly on Requardt and 
Wagner's (RW) paper. (8~ I will emphasize here three points, and refer to 
our published papers for more complete discussions. 

(i) RW suggest that the effective interaction kernel U in their 
Eq.(3.3) can in some cases be sufficiently long-ranged to cause a 
breakdown of the capillary wave model and of the usual identification of 
7Tz with ?'KB. [-Hereafter references to equations in their paper will be 
preceded by R, e.g., (R3.3).] This is certainly a logical possibility, and in 
fact, is known to happen in certain well-defined situations. For example, 
Weeks etal. ~7) have solved exactly a model with long-ranged anisotropic 
interactions parallel to the interface. They pointed out that 7TZ is a surface 
stiffness that  in general need not equal the usual surface tension 7KB' They 
found for this particular model exact results showing that the interface 
width W remains finite as g ~ 0 +, but that 7Tz = oO while 7I~B remains 
finite. This is precisely the scenario advocated by RW for the ordinary 
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liquid-vapor interface in d =  3. A generalized interface Hamiltonian Hin t 
with similar behavior has been studied by Lipowsky, (9)'2 where 

with 

1 q2 
Hint =~ f dq ~Y'eff(q) I/~(q)l 2 (1) 

~eff(q) ~ kq -~ (2) 

and k a constant. For  17 = 0 the model reduces to the surface tension term 
of the usual capillary wave model, while for ~/> 0 we arrive at a model 
satisfying condition (R3.12ii). This model with t /> 0 is believed to apply to 
an interface in a quasiperiodic potential, which can be thought of as 
exhibiting an increasing stiffness on large scales. (9~ Such an interface is 
always smooth in d =  3 (i.e., always has a finite width W). 

However, I doubt very strongly that any such scenario could apply to 
the liquid-vapor interface in d = 3 of an ordinary isotropic fluid with short- 
ranged intermolecular interactions! Here the surface stiffness tends to a 
constant on large length scales with "~TZ=TKB .(7) I find compelling the 
original physical argument leading to the TZ formula(H)'3: we know from 
thermodynamics that the free energy change for a long-wavelength distor- 
tion of the liquid-vapor interface is given by the macroscopic surface 
tension times the change in area (plus work against an external field, if 
present). On the other hand, we can use the standard density functional 
formalism (12~ (which should be exact provided there is an invertible 
relationship between the external potential and the density profile) to 
calculate theoretically the same free energy change. The latter gives 
Eq. (R3.1). It is perhaps not a priori obvious that one can justify the further 
expansion of this result (v) to yield the usual TZ formula in Eq. (R3.9), but 
thermodynamics tells us that such a relation [-i.e., a constant (the surface 
tension) times the change in area (1/2 ~ ds IVh(s)l 2) to lowest order]  must 
hold if indeed (R3.1) is exact and correctly evaluated. Similarly, it is really 
thermodynamics that tells us that for the ordinary liquid-vapor interface 
we should have r/= 0 in the generalized interface Hamiltonian (1). 

(ii) RW attempt to cast doubt on the CWM [i.e., Eq. (1) with t / = 0  
plus a term describing work against an external gravitational field with 
strength g]  because its predictions for d = 3 in the limit g --, 0 + and V = oe 
do not obey certain scaling relations given in (R2.4). They claim that these 
scaling relations for d =  3 were widely believed to be true, and seem to 
argue in their Section 4 that a proper scaling theory must give relations of 
the form (R2.4) even for d =  3. 

2 For a comprehensive general review see Forgas et aL ~1~ 
3 See, in particular, on this point Appendix C of ref. 7. 
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I agree with RW that the CWM for d =  3 does not obey the scaling 
relations given in (R2.4), but I assert that there is absolutely no reason to 
believe it should! That is, it is these naive scaling relations that are 
incorrect in d =  3, rather than the CWM. 4 Incidentally, I doubt there ever 
was a widespread acceptance of these (incorrect) scaling relations in d =  3, 
though it is true that some careless statements about their validity have 
appeared in the literature. 

In my original work on interface scaling and the CWM, (3) I showed 
that the CWM satisfied scaling relations of the form (R2.4) only in dimen- 
sions d <  3, where the ultraviolet cutoff can be ignored. However, this is 
not the case for the crossover dimension d =  3 (and for d >  3). I explicitly 
mentioned (3~ that the correlation function H in (R2.4ii) in d =  3 takes on 
a "crossover logarithmic form" not consistent with the scaling in (R2.4ii).. 
I also referred to an earlier calculation using the CWM in d =  3 where the 
logarithm can be seen explicitly (2) and mentioned exact results for lattice 
(SOS) systems in d = 3  (i.e., corresponding to an interface dimension 
d ' = 2 )  where logarithms again appear. (13) If despite this 5 there exists a 
widespread belief to the contrary, I trust the blame will not be placed at my 
doorstep! 

I cannot understand RW's insistence in their Section 4 that in a proper 
scaling theory "all (!)" distances have to be measured in terms of the 
"natural" length scale x =~ s/Lc as Lc --, oo, with Lc the capillary length. My 
original interface scaling ansatz was patterned after that for the bulk 
pair correlation function H, where (12) H ( r ) ~ r  (d-2+~)Hs(r/~B), with H,  
a scaling function of order unity for small x e - r / ~  B which decays 
exponentially for large xB. In addition to the "natural scale" xe set by the 
bulk correlation length i s ,  it is essential to allow for power-law decay on 
shorter length scales r ~ ~B- For the interface pair correlation function H, 
the analogous length scales s ~ L c again turn out to be important both in 
d >  3 (where power-law decay is found) and in d--  3, where the logarithm 
appears. (2'4/Only for d <  3 is the scaling such that only the "natural" scale 
x is relevant. (5) 

(iii) Finally, RW discuss several peculiar features of the CWM in 
d =  3 for g =  0 and V= 0% particularly, regarding its predictions for the 
direct correlation function. However, I believe these results of RW do not 
indicate any new and interesting physics, such as a nonzero r/ in Eq. (2); 
rather they arise from the fact that setting g = 0 and V= oo in the CWM 
does not yield a well-characterized state of two-phase coexistence. (2 7) 

4 See ref. 5 for a detailed discussion of this point. 
5 Using Eqs. (A7) and (4.11) of ref. 4, one can see explicitly how the logarithm is generated 

as d--* 3. 
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A fundamental point, which I believe lies at the heart of the problems 
discussed by RW, is that in the grand canonical ensemble two-phase 
coexistence can be described only in the presence of appropriate nonzero 
external fields. (2-7) Examples of such fields for a system in a box with finite 
volume V = L  3 include short-ranged "wetting" and "nonwetting" wall 
potentials (the analogue of the familiar + -  boundary conditions for the 
Ising model) respectively located at the lower and upper parts of the box, 
or, as usually is considered in the CWM, an external gravitational field. 
Such fields can induce macroscopic phase separation, fixing both the 
average location of  the interface and the relative volume fractions of the 
two bulk phases; indeed, in their absence no interface at all would be found 
in the grand ensemble, but rather only states of pure liquid or pure vapor. 

In the CWM it is conventional (1~ to consider an external (and strictly 
speaking, truncated (3)) gravitational field v ( z ) =  mgz, which will induce the 
above "broken symmetry" state for any g > 0. With this bulk field present 
we do not need to consider the effects of any distant wall potentials to have 
a well-characterized state of two-phase coexistence, and the thermodynamic 
limit V ~ oe can then be taken with no subtleties arising. 

However, if we now set g -  0 in the CWM we no longer have a well- 
characterized state with, e.g., fixed volume fractions for the bulk phases. 
The basic density functional formalism leading to Eqs. (R2.2) assumes an 
invertible relation between the external field and the density. (12) This is true 
for any g > 0, but breaks down in the degenerate case g - 0 .  Thus it is no 
surprise that this limit seems very singular. 

This singular behavior is only apparent and arises basically from the 
fact that one can ignore the effects of distant wall potentials on the inter- 
face for any g > 0 in the CWM, but must take them into account if the bulk 
field vanishes identically. There is no problem in principle with studying a 
state with g -  0 in the CWM, but one must first specify for a finite volume 
V = L  3, say, the appropriate distant wall boundary conditions that will, 
e.g., fix the average location of the interface, etc. Then the limit V ~ oo can 
be examined carefully. In such an analysis I would expect essentially the 
same behavior that one finds in the ordinary CWM as g ~ 0 + and V= oe 
with L playing the role of Lc .6 

I ecourage RW to carry out a careful examination of the g - 0  
problem along the lines suggested here to see if this conjecture is correct. 
For my part, however, I am content to remain with the ordinary CWM 
with g > 0, where such subtleties do not arise. In the limit g ~ 0 +, one can 
in a simple way establish scaling relations for correlation functions and 
show that the exact equations (R3.2) are satisfied in all d for the C W M .  (3-6) 

6 A careful discussion of finite-size etIects in the C W M  is given by Gelfand and Fisher. 114) 
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Thus I see no reason to doub t  the essential  correctness of the C W M  predic-  
t ions for the usual  l i q u i d - v a p o r  interface. 

F o r  a more  technical  discussion,  including an a p p r o x i m a t e  ca lcula t ion  
of the direct  cor re la t ion  funct ion in d =  3, see ref. 5. In  response to RW's  
remarks  a b o u t  this paper ,  I ment ion  only that  in our  Section VI, we did try 
to examine  in some detai l  the behav ior  of interface moments  of the direct  
cor re la t ion  funct ion using the full express ion (R4.1), and  made  no exclu- 
s ion of  the region Iql ~< Lc 1. 

Let  me close by men t ion ing  a basic area  of agreement  with RW. The 
C W M  is very plausible,  but  to the best  of my  knowledge  has never been 
der ived r igorous ly  from a realist ic microscopic  Hami l ton ian .  Such a 
calculat ion,  including,  in par t icular ,  a p r o o f  showing whether  or  no t  r /=  0 
in the usual  l i q u i d - v a p o r  case, could  be quite instructive.  If indeed agains t  
mos t  expecta t ions  it turns  out  tha t  17 > 0 ,  then vast  areas  of interfacial  
physics,  {1~ including theories  of  wet t ing and  roughening  t ransi t ions,  will 
have to be fundamenta l ly  reexamined.  Some r igorous  stat is t ical  mechanics  
is cal led for! 
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